Discovery of Isonicotinamide Derived β -Secretase Inhibitors: In Vivo Reduction of β -Amyloid

Matthew G. Stanton,^{*,†} Shaun R. Stauffer,[†] Alison R. Gregro,[†] Melissa Steinbeiser,[†] Philippe Nantermet,[†] Sethu Sankaranarayanan,[§] Eric A. Price,[§] Guoxin Wu,[§] Ming-Chih Crouthamel,[§] Joan Ellis,[‡] Ming-Tain Lai,[§] Amy S. Espeseth,[§] Xiao-Ping Shi,[§] Lixia Jin,[‡] Dennis Colussi,[§] Beth Pietrak,[§] Qian Huang,[§] Min Xu,[§] Adam J. Simon,[§] Samuel L. Graham,[†] Joseph P. Vacca,[†] and Harold Selnick[†]

Departments of Medicinal Chemistry, Alzheimer's Research, and Drug Metabolism, Merck Research Laboratories, Post Office Box 4, West Point, Pennsylvania 19486

Received March 10, 2007

Abstract: β -Secretase inhibition offers an exciting opportunity for therapeutic intervention in the progression of Alzheimer's disease. A series of isonicotinamides derived from traditional aspartyl protease transition state isostere inhibitors has been optimized to yield low nanomolar inhibitors with sufficient penetration across the blood-brain barrier to demonstrate β -amyloid lowering in a murine model.

Alzheimer's disease (AD) represents a major unmet medical need. Despite substantial effort, there exists no disease modifying treatment for AD.¹ It has been proposed that the biological pathway leading to the observed disease pathology is reliant on the processing of amyloid precursor protein (APP).² Proteolysis of APP by the secretase enzymes (α , β , and γ) generates peptide fragments, with the most relevant to AD being A β_{40} and A β_{42} . These fragments are derived from the action of both γ - and β -secretase and are the primary components of the insoluble amyloid plaques in AD patients. Disruption of this cascade via γ - and more recently β -secretase inhibition has and continues to be a central focus of drug discovery efforts.³

Inhibition of the β -secretase (β -site APP cleaving enzyme or BACE-1) pathway by small molecule interference has been a goal of the pharmaceutical industry since the identification and characterization of BACE-1 in 1999.⁴ Particularly encouraging for this strategy was the discovery in 2001 that BACE-1 knockout mice were devoid of β -secretase activity, did not generate A β , and displayed a relatively normal phenotype.⁵

Previous work in our laboratories revealed 1, a potent BACE-1 inhibitor derived from a 1,3,5-trisubstituted aromatic core and containing a traditional aspartyl protease inhibitor motif, the hydroxyethylamine (HEA) transition state isostere (Figure 1).⁶ Interaction of the HEA with the aspartic acid residues in the catalytic region of the enzyme is critical for activity. Despite the excellent cellular activity of 1 (sAPP β = 20 nM), brain penetration of this class of compounds following i.v. administration in mice is negligible. The alleged culprits for this lack of CNS penetration are poor permeability and Pgp-mediated efflux, presumably due to the compound's multiple hydrogen bond donors and acceptors.⁷ With this in mind, the

Figure 1. Isonicotinamide BACE inhibitor (4) derived from hydroxyethylamine (HEA) 1 (IC₅₀ values from the in vitro ECL assay).

Scheme 1. Synthesis of Isonicotinamide β -Secretase Inhibitors 4 and 8a-f^a

^{*a*} Reagents and conditions: (a) $CH_3NHSO_2R^1$, $Pd_2(dba)_3$, Xantphos, K_3PO_4 , toluene, 100 °C; (b) LiOH, MeOH, THF; (c) $R^3[CH(CH_2)CH]CH_2$ -NH R^2 , $Pd(t-Bu_3P)_2$, K_3PO_4 , DMF, 120 °C; (d) amine ((2*S*)-2-amino-3-phenylpropan-1-ol, (2*S*)-1-azido-3-phenylpropan-2-amine, **10a**,**b**), BOP, TEA, DCM; (e) H_2 , $Pd(OH)_2$, EtOH, TFA; (f) NaOMe (**10a**) or KF•HF, Bu₄NF•2HF (**10b**); (g) HN₃, PPh₃, DEAD, THF; (h) EtOAc, HCl.

HEA isostere was truncated to a simple primary alcohol (2). This led to a substantial loss in BACE-1 inhibitory activity. Investigations focusing on replacement of the *P*3 amide and optimization of the 1,3,5-trisubstituted aromatic core have been the subject of previous communications.^{8a,b} It was found that small cyclopropylmethylamine *P*3 groups in combination with the isonicotinamide core (3) could provide improved potency relative to the larger α -methylbenzamide (2). This communication describes further refinement of the *P*2 sulfonamide and optimization of the primary amine aspartyl binding region leading to **4**, a molecule suitable for in vivo evaluation in a murine model.

Synthesis of isonicotinamide inhibitors **4** and **8a**–**f** began with methyl 2,6-dichloroisonicotinate (**5**; Scheme 1). Monosulfonamide incorporation according to the procedure described by Buchwald, followed by saponification, gave isonicotinic acids **6a**,**b**.⁹ Amination under modified Hartwig conditions generated the 2-amino-6-sulfonamidoisonicotinic acids **7a**–**f**.¹⁰ Coupling of these acids to either the amino alcohol or the amino azides derived from phenylalanine, followed by reduction of the azide and/or removal of the benzyl protecting group (R² = benzyl) gave compounds **4** and **8a**–**f**. Azides **10a**,**b** were prepared by epoxide opening with the appropriate nucleophile (MeO⁻, F⁻) followed by a Mitsunobu reaction with hydrazoic acid and deprotection of the amine.

^{*} To whom correspondence should be addressed. Current address: Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115. Phone: 617-992-2050. Fax: 617-992-2406. E-mail: matthew_stanton@ merck.com.

[†] Department of Medicinal Chemistry.

[§] Department of Alzheimer's Research.

[‡] Department of Drug Metabolism.

Table 1. Binding Affinity, Pgp Efflux, and Brain Penetration for Test Compounds^a

cmpd ^b	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Х	IC_{50}^{c}	$sAPP\beta^d$	MDR1 ^e	[brain] ^f	[brain]/sAPP β
8a 8b 8c	CH ₃ CH(CH ₃) ₂ CH(CH ₃) ₂	H CH ₂ CH ₂ CH ₃ H	H H CH ₃	H H H	OH OH OH	1100 350 14	n.d. >20 000 >20 000	n.d. 3.6 n.d.	n.d. 1400 ± 1350 n.d.	< 0.07
8d 8e 8f 4	CH ₃ CH ₃ CH(CH ₃) ₂ CH(CH ₃) ₂	H CH3 CH3 H	CH ₃ ^g CH ₃ CH ₃ CH ₃	$f H \ CH_2OCH_3 \ CH_2F \ C$	NH ₂ NH ₂ NH ₂ NH ₂	$34 \\ 12 \pm 14 \\ 18 \\ 2 \pm 0.2$	280 ± 49 173 ± 12 910 49 ± 18	36.5 n.d. 4.8 >50	$\begin{array}{l} 420 \pm 157 \\ 1100 \pm 492 \\ 3080 \pm 2400^{h} \\ 560 \pm 128^{h} \end{array}$	1.5 6.4 3.4 11.4

^{*a*} All values lacking standard deviation were measured as single data points. ^{*b*} All compounds were >95% pure by HPLC and characterized by ¹H NMR and HRMS. ^{*c*} Biochemical IC₅₀. Values are reported in nM and were determined via electrochemiluminescence assay. ^{*d*} Cell-based assay. Values are reported as IC₅₀'s values in nM and were determined via Alpha Screen assay. ^{*e*} B/A–A/B ratio. ^{*f*} Concentrations determined 30 min post 20 mg/kg i.v. dose (*n* of 3) and are reported in nM. ^{*g*} Compound exists as a mixture of *trans*-methyl(cyclopropylmethyl) diastereomers. ^{*h*} Represents concentrations from dosing of mixture of *trans*-methyl(cyclopropylmethyl) diastereomers.

Figure 2. Time course study of $A\beta$ reduction in APP-YAC mice upon treatment with **4** (50 mg/kg i.v.).

Initial efforts in the isonicotinamide series of BACE-1 inhibitors revealed that truncation of the HEA to a simple primary alcohol gave reasonable activity for such a simple, low molecular weight (mw = 432) compound (8a, Table 1). Optimization of the P2 sulfonamide (Me to i-Pr) and alkylation of the P3 amine (NH to NCH₂CH₂CH₃; 8b) gave both improved biochemical potency and, more importantly, greater passive permeability and decreased Pgp efflux. These improved properties were reflected in the in vivo model for brain penetration, with **8b** achieving brain concentrations of 1.4 μ M after i.v. administration (30 min post-dose, 20 mg/kg). Encouraged by this result, the P3 region of the molecule was further optimized to the [S,S]-trans-methylcyclopropyl group, imparting further benefits with respect to potency (8c, 14 nM).^{8b} Despite the low nanomolar activity of this series, activity in the functional cellbased assay was not observed (sAPP $\beta > 20 \ \mu M$).

Incorporation of an amino residue in place of the hydroxyl group (alternative aspartyl ligand)^{8b,c} provided molecules with activity in cell culture (**4**, **8d**–**f**). Compound **8d** achieved CNS exposure (20 mg/kg i.v. dose) in excess of the molecules cellular IC₅₀. Optimization of this series was focused on the transition state isostere. Incorporation of branched alkyl substituents increased the biochemical potency (**4**, **8e**–**f**). Attenuation of the pK_a of the amino functionality by incorporation of a fluoromethyl substituent gave improved potency and, in the case of **8f**, reduced Pgp efflux. Analysis of the brain concentrations relative to the cellular IC₅₀ values revealed compound **4** as a leading candidate for in vivo studies.

As a result of the ratio of brain concentration to cellular IC₅₀, compound **4** was chosen as a proof of concept molecule for studying the effect of inhibition of BACE-1 on brain levels of A β_{40} (Figure 2). Transgenic mice expressing human WT APP under the control of a yeast artificial chromosome vector¹¹ were administered 50 mg/kg of **4** as an i.v. bolus and brain concentrations of A β_{40} were measured at 0.5, 1.5, 3, and 4.5 h postdose. The results of this study are depicted in Figure 2 and show

Figure 3. Dose response study of $A\beta$ reduction in APP-YAC mice upon treatment with 4 (3.0 h post i.v. bolus).

Table 2. Pharmacokinetic Parameters of Isonicotinamide BACE

 Inhibitors in Rat

cmpd	Cl ^a (mg/min/kg)	Vd ^a (I/kg)	$t_{1/2}^b$ (hr)	C_{\max}^{b} (μ M)	%F
8e	42.6	5.3	2.7	2.7	69
8f	59.1	4.2	1.6	0.2	8
4	45.8	3.9	1.6	0.3	13

^{*a*} 2 mg/kg i.v. dose (solution in 25%DMSO/75%H₂O). ^{*b*} 10 mg/kg oral dose (solution in 1% methylcellulose).

a maximal reduction of A β_{40} (34%) at 3 h (p < 0.01, Tukey– Kramer HSD) compared with that of vehicle-treated animals, while a positive control γ -secretase inhibitor lowered brain A β_{40} ~50% (p < 0.001, Tukey–Kramer HSD). Determination of concentrations of **4** in the brain at these time points indicated a maximal concentration of 5.8 μ M at 0.5 h, with 0.7 μ M remaining at the 4.5 h time point (data not shown).

Having determined a maximal $A\beta_{40}$ reduction at 3 h postdose, a full dose–response study was performed (Figure 3). The $A\beta_{40}$ reduction measured in the time-course study was confirmed in this study with ~34% reduction of $A\beta_{40}$ at 50 mg/kg at 3 h after dosing relative to vehicle (p < 0.001, Tukey– Kramer HSD).¹² The $A\beta_{40}$ reduction was dose proportional, with doses <25 mg/kg not showing statistical significance. The concentration of drug in the brain was 1.9 μ M and 0.7 μ M for the 50 and 25 mg/kg dose groups, respectively, and below the limit of quantification in the 12.5 and 6.25 mg/kg groups (data not shown).

The pharmacokinetic parameters of selected isonicotinamide BACE-1 inhibitors were investigated in rat (Table 2). In general, compounds from this series displayed high clearance and high volumes of distribution. The i.v. half-lives were moderate and the oral bioavailability was poor. The notable exception with respect to bioavailability is compound **8e**, which is 69% bioavailable, with a good oral maximum concentration of 2.7 μ M. The challenge remains to find molecules that combine the reasonable pk parameters of **8e**, with the potency/efficacy of **4**.

AD remains one of the more substantial unmet medical needs. Small molecule interference in the amyloid cascade represents an attractive therapeutic option. β -Secretase is a particularly appealing target with knock-out mice demonstrating A β reduction and a relatively normal phenotype.⁵ The challenges surrounding β -secretase inhibitor design are substantial and are highlighted by the difficulty in uncovering small molecules that maintain potency while demonstrating desirable penetration across the blood-brain barrier. Starting from compounds containing a known aspartyl protease transition state isostere, isonicotinamide-based inhibitors were discovered that allowed for truncation of the HEA isostere to a simple amine. Optimization for potency and brain penetration led to 4, a low nanomolar BACE-1 inhibitor that was effective in reducing A β levels in a murine model in a dose-dependent manner. Issues that remain to be resolved are Pgp-mediated efflux and poor pharmacokinetics. Efforts are currently under way to address these liabilities and will be the subject of future communications.

Supporting Information Available: Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Cummings, J. L. Alzheimer's disease. N. Engl. J. Med. 2004, 351, 56–67.
- (2) Sinha, S.; Lieberburg, I. Cellular mechanisms of β-amyloid production and secretion. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 11049–11053.
- (3) Beher, D.; Graham, S. L. Protease inhibitors as potential diseasemodifying therapeutics for Alzheimer's disease. *Expert Opin. Invest. Drugs* 2005, 14, 1385–1409.
- (4) (a) Vassar, R.; Bennett, B. D.; Babu-Kahn, S.; Kahn, S.; Mendiaz, E. A.; Denis, P.; Teplow, D. B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edendon, S.; Lile, J.; Jarosinski, M. A.; Biere, A. L.; Curran, E.; Burgess, T.; Louis, J. C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. β -Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286, 735. (b) Sinha, S.; Anderson, J. P.; Barbour, R.; Basi, G. S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H. F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Leiberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S. M.; Wang, S.; Walker, D.; John, V. Purification and cloning of amyloid precursor protein β -secretase from human brain. *Nature* **1999**, 402, 537–540. (c) Yan, R.; Bienkowski, M. J.; Shuck, M. E.; Miao, H.; Tory, M. C.; Pauley, A. M.; Brashler, J. R.; Stratman, N. C.; Mathews, W. R.; Buhl, A. E.; Carter, D. B.; Tomasselli, A. G.; Parodi, L. A.; Heinrikson, R. L.; Gurney, M. E. Membrane-anchored aspartyl protease with Alzheimer's disease β -secretase activity. *Nature* **1999**, 402, 533. (d) Hussain, I.; Powell, D.; Howlett, D. R.; Tew, D. G.; Meek, T. D.; Chapman, C.; Gloger, I. S.; Murphy, K. E.; Southan, C. D.; Ryan, D. M.; Smith, T. S.; Simmons, D. L.; Walsh, F. S.; Dingwall, C.; Christie, G. Identification of a novel aspartic protease (Asp 2) as β -secretase Mol. Cell. Neurosci. **1999**, 14, 419–427.
- (5) (a) Cai, H.; Wang, Y.; McCarthy, D.; Wen, H.; Borchelt, D. R.; Price, D. L.; Wong, P. C. BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci. 2001, 4, 233-234. (b) Roberts, S. L.; Anderson, J.; Basi, G.; Bienkowski, M. J.; Branstetter, D. G.; Chen, K. S.; Freedman, S.; Frigon, N. L.; Games, D.; Hu, K.; Johnson-Wood, K.; Kappenman, K. E.; Kawabe, T.; Kola, I.; Kuehn, R.; Lee, M.; Liu, W.; Motter, R.; Nichols, N. F.; Power, M.; Robertson, D. W.; Schenk, D.; Schoor, M.; Shopp, G. M.; Shuck, M. E.; Sinha, S.; Svensson, K. A.; Tatsuno, G.; Tintrup, H.; Wijsman, J.; Wright, S.; McConlogue, L. BACE knockout mice are healthy despite lacking the primary β -secretase activity in the brain. Hum. Mol. Genet. 2001, 10, 1317-1324. (c) Recent reports demonstrate hypomyelination of peripheral nerves in BACE1-/ - mice. It remains to be seen if these results are recapitulated in conditional k/o mice or by pharmacological inhibition. Willem, M.; Garratt, A. N.; Novak, B.; Citron, M.; Kaufmann, S.; Rittger, A.; DeStrooper, B.; Saftig, P.; Birchmeier, C.; Haass, C. Control of peripheral nerve myelination by the beta-secretase BACE1. Science 2006, 314, 664-666. (d) For, a recent report on the role of BACE1 in memory and synaptic plasticity, see: Ma, H.; Lesne, S.; Kotilinek, L.; Steidl-Nichols, J.

V.; Sherman, M.; Younkin, L.; Younkin, S.; Forster, C.; Sergeant, N.; Delacourte, A.; Vassar, R.; Citron, M.; Kofuji, P.; Boland, L. M.; Ashe, K. H. Involvement of b-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. *Proc. Natl. Acad. Sci. U.S.A.* 2007, *104*, 8167–8172.

- (6) (a) Coburn, C. A.; Stachel, S. J.; Li, Y.-M.; Rush, D. M.; Steele, T. G.; Chen-Dodson, E.; Holloway, M. K.; Xu, M.; Huang, Q.; Lai, M.-T.; DiMuzio, J.; Crouthamel, M.-C.; Shi, X.-P.; Sardana, V.; Chen, Z.; Munshi, S.; Kuo, L.; Makara, G. M.; Annis, D. A.; Tadikonda, P. K.; Nash, H. M.; Vacca, J. P.; Wang, T. Identification of a small molecule nonpeptide active site β -secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases. J. Med. Chem. 2004, 47, 6117-6119. (b) Stachel, S. J.; Coburn, C. A.; Steele, T. G.; Jones, K. G.; Loutzenhiser, E. F.; Gregro, A. R.; Rajapakse, H. A.; Lai, M.-T.; Crouthamel, M.-C.; Xu, M.; Tugusheva, K.; Lineberger, J. E.; Pietrak, B. L.; Espeseth, A. S.; Shi, X.-P.; Chen-Dodson, E.; Holloway, M. K.; Munshi, S.; Simon, A. J.; Kuo, L.; Vacca, J. P. Structure-based design of potent and selective cellpermeable inhibitors of human β -secretase (BACE-1). J. Med. Chem. 2004, 47, 6447-6450. For representative examples of HEA BACE inhibitors from other laboratories, see: Maillard, M. C.; Hom, R. K.; Benson, T. E.; Moon, J. B.; Mamo, S.; Bienkowski, M.; Tomasselli, A. G.; Woods, D. D.; Prince, D. B.; Paddock, D. J.; Emmons, T. L.; Tucker, J. A.; Dappen, M. S.; Brogley, L.; Thorsett, E. D.; Jewett, N.; Sinha, S.; John, V. Design, synthesis, and crystal structure of hydroxyethyl secondary amine-based peptidomimetic inhibitors of human beta-secretase. J. Med. Chem. 2007, 50, 776-781. Also see: Hussain, I.; Hawkins, J.; Harrison, D.; Hille, C.; Wayne, G.; Cutler, L.; Buck, T.; Walter, D.; Demont, E.; Howes, C.; Naylor, A.; Jeffrey, P.; Gonzalez, M.; Dingwall, C.; Michel, A.; Redshaw, S.; Davis, J. B. Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J. Neurochem. 2007, 100, 802-809 and references therein.
- (7) Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A. Classification analysis of P-gylcoprotein substrate specificity. *J. Drug Target* 2003, *11*, 391–406.
- (8) (a) Stachel, S. J.; Coburn, C. A.; Steele, T. G.; Crouthamel, M.-C.; Pietrak, B. L.; Lai, M.-T.; Holloway, M. K.; Munshi, S. K.; Graham, S. L.; Vacca, J. P. Conformationally biased P3 amide replacements of β-secretase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 641-644. (b) Stauffer, S. R.; Stanton, M. G.; Gregro, A. R.; Steinbeiser, M. A.; Shaffer, J. R.; Nantermet, P. G.; Barrow, J. C.; Rittle, K. E.; Collusi, D.; Espeseth, A. S.; Lai, M.-T.; Pietrak, B. L.; Holloway, M. K.; McGaughey, G. B.; Munshi, S. K.; Selnick, H. G.; Simon, A. J.; Graham, S. L.; Vacca, J. P. Discovery and SAR of isonicotinamide BACE-1 inhibitors which bind β -secretase in a N-terminal 10s-loop down conformation. Bioorg. Med. Chem. Lett. 2007, 17, 1788-1792. (c) Yang, W.; Lu, W.; Lu, Y.; Zhong, M.; Sun, J.; Thomas, A. E.; Wilkinson, J. M.; Fucini, R. V.; Lam, M.; Randal, M.; Shi, X.-P.; Jacobs, J. W.; McDowell, R. S.; Gordon, E. M.; Ballinger, M. D. Aminoethylenes: A tetrahedral intermediate isostere yielding potent inhibitors of the aspartyl protease BACE-1. J. Med. Chem. 2006, 49, 839-842.
- (9) (a) Yin, J.; Buchwald, S. L. Palladium-catalyzed intermolecular coupling of aryl halides and amides. *Org. Lett.* 2000, *2*, 1101–1104.
 (b) Yin, J.; Buchwald, S. L. Pd-catalyzed intermolecular amidation of aryl halides: The discovery that xantphos can be trans-chelating in a palladium complex. *J. Am. Chem. Soc.* 2002, *124*, 6043–6048.
 (c) Steinhuebel, D.; Palucki, M.; Askin, D.; Dolling, U. Synthesis of N-arylated sultams: Palladium- and copper-catalyzed cross coupling of aryl halides with 1,4-butane and 1,3-propanesultams. *Tetrahedron Lett.* 2004, *45*, 3305–3307.
- (10) Stauffer, S. R.; Steinbeiser, M. A. Pd-catalyzed amination in a polar medium: rate enhancement, convenient product isolation, and tandem Suzuki cross coupling. *Tetrahedron Lett.* **2005**, *46*, 2571–2575.
- (11) Lamb, B. T.; Sisodia, S. S.; Lawler, A. M.; Slunt, H. H.; Kitt, C. A.; Kearns, W. G.; Pearson, P. L.; Price, D. L.; Gearhart, J. D. Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. *Nat. Genet.* **1993**, *5*, 22–30.
- (12) Three out of 33 mice did not survive at the highest dose (50 mg/kg) of 4 for the two studies in Figures 2 and 3 (compared to 0 deaths in 16 control animals). No deaths occurred in the lower doses of 4.

JM070272D